16 research outputs found

    Characterization of Indoor Extremely Low Frequency and Low Frequency Electromagnetic Fields in the INMA-Granada Cohort

    Get PDF
    Objective: To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-“INMA” population-based birth cohort. Methodology: The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9–10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Results: Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Conclusion: Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.This work was supported by the Spanish Ministry of Health (CIBERESP and FIS PI11/0610) and the Andalusia Regional Government, Council of Innovation, Science and Enterprise (Excellence Project P09-CTS-5488) and Council of Health (SAS PI-0675-2010)

    Risk of Soft-Tissue Sarcoma Among 69 460 Five-Year Survivors of Childhood Cancer in Europe

    Get PDF
    Background: Childhood cancer survivors are at risk of subsequent primary soft-tissue sarcomas (STS), but the risks of specific STS histological subtypes are unknown. We quantified the risk of STS histological subtypes after specific types of childhood cancer. Methods: We pooled data from 13 European cohorts, yielding a cohort of 69 460 five-year survivors of childhood cancer. Standardized incidence ratios (SIRs) and absolute excess risks (AERs) were calculated. Results: Overall, 301 STS developed compared with 19 expected (SIR = 15.7, 95% confidence interval [CI] = 14.0 to 17.6). The highest standardized incidence ratios were for malignant peripheral nerve sheath tumors (MPNST; SIR = 40.6, 95% CI = 29.6 to 54.3), leiomyosarcomas (SIR = 29.9, 95% CI = 23.7 to 37.2), and fibromatous neoplasms (SIR = 12.3, 95% CI = 9.3 to 16.0). SIRs for MPNST were highest following central nervous system tumors (SIR = 80.5, 95% CI = 48.4 to 125.7), Hodgkin lymphoma (SIR = 81.3, 95% CI = 35.1 to 160.1), and Wilms tumor (SIR = 76.0, 95% CI = 27.9 to 165.4). Standardized incidence ratios for leiomyosarcoma were highest following retinoblastoma (SIR = 342.9, 95% CI = 245.0 to 466.9) and Wilms tumor (SIR = 74.2, 95% CI = 37.1 to 132.8). AERs for all STS subtypes were generally low at all years from diagnosis (AER < 1 per 10 000 person-years), except for leiomyosarcoma following retinoblastoma, for which the AER reached 52.7 (95% CI = 20.0 to 85.5) per 10 000 person-years among patients who had survived at least 45 years from diagnosis of retinoblastoma. Conclusions: For the first time, we provide risk estimates of specific STS subtypes following childhood cancers and give evidence that risks of MPNSTs, leiomyosarcomas, and fibromatous neoplasms are particularly increased. While the multiplicative excess risks relative to the general population are substantial, the absolute excess risk of developing any STS subtype is low, except for leiomyosarcoma after retinoblastoma. These results are likely to be informative for both survivors and health care providers

    Colorectal Adenomas and Cancers After Childhood Cancer Treatment: A DCOG-LATER Record Linkage Study

    No full text
    Background: Although colorectal adenomas serve as prime target for colorectal cancer (CRC) surveillance in other high-risk groups, data on adenoma risk after childhood cancer are lacking. We evaluated the risk of histologically confirmed colorectal adenomas among childhood cancer survivors. A secondary aim was to assess CRC risk. Methods: The DCOG-LATER cohort study includes five-year Dutch childhood cancer survivors and a sibling comparison group (n ¼ 883). Colorectal tumors were identified from the population-based Dutch Pathology Registry (PALGA). We calculated cumulative incidences of adenomas/CRCs for survivors and siblings. For adenomas, multivariable Cox regression models were used to evaluate potential risk factors. All statistical tests were two-sided. Results: Among 5843 five-year survivors (median follow-up ¼ 24.9 years), 78 individuals developed an adenoma. Cumulative incidence by age 45 years was 3.6% (95% confidence interval [CI] ¼ 2.2% to 5.6%) after abdominopelvic radiotherapy (AP-RT; 49 cases) vs 2.0% (95% CI ¼ 1.3% to 2.8%) among survivors without AP-RT (28 cases; Pdifference ¼ .07) and vs 1.0% (95% CI ¼ 0.3% to 2.6%) among siblings (6 cases) (Pdifference ¼ .03). Factors associated with adenoma risk were AP-RT (hazard ratio [HR] ¼ 2.12, 95% CI ¼ 1.24 to 3.60), total body irradiation (TBI; HR ¼ 10.55, 95% CI ¼ 5.20 to 21.42), cisplatin (HR ¼ 2.13; 95% CI ¼ 0.74 to 6.07 for ; HR ¼ 3.85, 95% CI ¼ 1.45 to 10.26 for 480 mg/m2 ; Ptrend ¼ .62), a hepatoblastoma diagnosis (HR ¼ 27.12, 95% CI ¼ 8.80 to 83.58), and family history of early-onset CRC (HR ¼ 20.46, 95% CI ¼ 8.10 to 51.70). Procarbazine was statistically significantly associated among survivors without AP-RT/TBI (HR ¼ 2.71, 95% CI ¼ 1.28 to 5.74). Thirteen CRCs occurred. Conclusion: We provide evidence for excess risk of colorectal adenomas and CRCs among childhood cancer survivors. Adenoma risk factors include AP-RT, TBI, cisplatin, and procarbazine. Hepatoblastoma (familial adenomatous polyposisassociated) and family history of early-onset CRC were confirmed as strong risk factors. A full benefit-vs-harm evaluation of CRC screening among high-risk childhood cancer survivors warrants consideration

    Risk of subsequent primary oral cancer in a cohort of 69,460 5-year survivors of childhood and adolescent cancer in Europe: the PanCareSurFup study

    Get PDF
    Background Survivors of childhood cancer are at risk of subsequent primary malignant neoplasms (SPNs), but the risk for rarer types of SPNs, such as oral cancer, is uncertain. Previous studies included few oral SPNs, hence large-scale cohorts are required to identify groups at risks. Methods The PanCareSurFup cohort includes 69,460 5-year survivors of childhood cancer across Europe. Risks of oral SPNs were defined by standardised incidence ratios (SIRs), absolute excess risks and cumulative incidence. Results One hundred and forty-five oral SPNs (64 salivary gland, 38 tongue, 20 pharynx, 2 lip, and 21 other) were ascertained among 143 survivors. Survivors were at 5-fold risk of an oral SPN (95% CI: 4.4-5.6). Survivors of leukaemia were at greatest risk (SIR = 19.2; 95% CI: 14.6-25.2) followed by bone sarcoma (SIR = 6.4, 95% CI: 3.7-11.0), Hodgkin lymphoma (SIR = 6.2, 95% CI: 3.9-9.9) and soft-tissue sarcoma (SIR = 5.0, 95% CI: 3.0-8.5). Survivors treated with radiotherapy were at 33-fold risk of salivary gland SPNs (95% CI: 25.3-44.5), particularly Hodgkin lymphoma (SIR = 66.2, 95% CI: 43.6-100.5) and leukaemia (SIR = 50.5, 95% CI: 36.1-70.7) survivors. Survivors treated with chemotherapy had a substantially increased risk of a tongue SPN (SIR = 15.9, 95% CI: 10.6-23.7). Conclusions Previous radiotherapy increases the risk of salivary gland SPNs considerably, while chemotherapy increases the risk of tongue SPNs substantially. Awareness of these risks among both health-care professionals and survivors could play a crucial role in detecting oral SPNs early.</p
    corecore